

Edexcel IAL Chemistry A-level

Topic 18: Organic Chemistry – Arenes Detailed notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Bonding in Aromatic Compounds

Arenes are aromatic compounds that **contain a benzene ring as part of their structure**. They have **high melting points** due to the high stability of the delocalised benzene ring, but **low boiling points** as they are **non-polar** molecules and generally **cannot be dissolved** in water. Benzene is an **arene** consisting of a ring of **six carbon atoms** with **six hydrogen atoms**. This structure means benzene has a ring of **delocalised electrons**:

Example: Displayed and skeletal formula of benzene

The outer electron from the **p-orbital** of each carbon atom is **delocalised** into the centre to form the central ring. This overlap of electrons results in the formation of π -bonds.

The delocalised ring structure makes benzene **very stable** compared to other molecules of a similar size.

Evidence for Benzene's structure

When benzene was first discovered its structure was unknown. It was predicted from empirical measurements that it had a structure similar to that of **cyclohexatriene**, with three double bonds and three single bonds. However, chemical evidence and experiments suggested benzene actually had the structure given above.

Example: Displayed formula of cyclohexatriene

🕟 www.pmt.education

Thermochemical - Cyclohexatriene vs. Benzene

Based on the structure of cyclohexatriene, the enthalpy change of hydrogenation for benzene was **predicted to be -360 kJmol**⁻¹, three times the enthalpy change of cyclohexene.

Example:

It was later discovered that the enthalpy change of hydrogenation of benzene was **actually -208 kJmol⁻¹**, leading to the conclusion that its **structure** was **different** to that of **cyclohexatriene**. The enthalpy change of hydrogenation was **less negative than expected** (less exothermic), indicating that benzene is more stable than the suggested cyclohexatriene structure predicts.

X-ray Diffraction and Infrared Data

X-ray diffraction experiments have shown that **all** the bond lengths between carbon atoms in benzene are **the same**. If the cyclohexatriene structure was correct, three of the bond lengths would be the length of a **single** carbon bond and three would be the length of a **double** carbon bond. In reality, each bond in the benzene ring has an **intermediate length** in between that of a double and single bond.

The cyclohexatriene structure also did not explain **infrared data** collected from benzene molecules.

Reactions of Benzene

Benzene is resistant to **electrophilic addition** reactions, such as bromination, which other compounds with carbon-carbon double bonds, such as **alkenes**, readily undergo. Benzene does not undergo electrophilic addition since this would involve breaking up the **stable** delocalised ring of electrons.

🕟 www.pmt.education

Electrophilic Substitution

The delocalised ring in benzene is an **area of high electron density**, making it susceptible to attack from **electrophiles**. In an electrophilic substitution mechanism, electrophiles attack the electron ring, **partially destroying** it, before it is then restored to form the aromatic product. This mechanism allows **aromatic amines** and **nitrobenzene** to be produced from benzene.

The electrophile is shown as A^{+} .

Halogenation

Halogenation is a type of **electrophilic substitution reaction** in which benzene will react with halogens in the presence of a **catalyst**, such as iron(III) bromide (FeBr₃). The catalyst is required to generate the electrophile, which then reacts as shown above.

Example: The iron(III) bromide polarises the bromine molecule. This makes it easier for the bromine bond to break so that the bromine atom can act as an electrophile.

Nitration

Nitration is a form of electrophilic substitution, where the electrophile is an NO_2^+ ion. This is a **reactive intermediate**, produced in the reaction of concentrated sulfuric acid (H₂SO₄) with concentrated nitric acid (HNO₃). Sulfuric acid behaves as a **catalyst** since it is not used up in the reaction.

Example: Formation of the electrophile

$$H_{2}SO_{4} + HNO_{3} \longrightarrow H_{2}NO_{3}^{+} + HSO_{4}^{-}$$

$$H_{2}NO_{3}^{+} \longrightarrow H_{2}O + NO_{2}^{+}$$

When heated with benzene, these reagents lead to the **substitution of the NO**₂⁺ **electrophile** onto the benzene ring, **replacing a hydrogen** atom. The hydrogen ion released reacts with the HSO_4^- (produced above) to **reproduce** the sulfuric acid **catalyst**.

Mechanism

This reaction shows the **mono-substitution** of a single NO_2^+ electrophile, which takes place when the reaction temperature is **55°C**. At temperatures greater than this, multiple substitutions can occur on the benzene ring. It is vital that only one substitution occurs for the production of **aromatic amines**.

Sulfonation

When **sulfur trioxide** and **fuming sulfuric acid** are added to benzene, **benzenesulfonic acid** is produced via an electrophilic substitution mechanism.

Example:

Friedel-Crafts Acylation

The delocalised electron ring in benzene can also act as a **nucleophile**, leading to the **attack on acyl chlorides**. This reaction is known as **Friedel-Crafts acylation**.

In order for the reaction to take place, a **reactive intermediate** must be produced from a reaction between the acyl chloride and an **aluminium chloride catalyst**.

Example: Formation of the reactive intermediate

R-COCI + AICI₃ $R-CO^+ + AICI_4^-$

This reactive intermediate is then attacked by the benzene ring.

Mechanism

At the end of the reaction, the H^+ ion removed from the ring reacts with the $AlCl_4^-$ ion to reform the aluminium chloride, indicating it to be a catalyst.

The product of this reaction is a **phenylketone**. In this case, the benzene group is called a **phenyl group**. These molecules are commonly used in the industrial production of dyes, pharmaceuticals and even explosives.

Bromine Water

Phenol, produced in electrophilic substitution reactions with benzene, can react with bromine water via **multiple substitutions** to produce 2,4,6-tribromophenol which forms as a **white precipitate** with a distinct smell of antiseptic. This reaction decolourises bromine water.

Example: Formation of 2,4,6-tribromophenol

www.pmt.education

Benzene cannot react with bromine water. The increased reactivity of phenol is due to the **lone pair of electrons on the oxygen atom**, which is delocalised into the benzene ring structure. This increases the **electron density** of the ring, making it less stable and thus **more susceptible to attack** from electrophiles.

Combustion

Benzene reacts with oxygen to produce carbon dioxide and water. This reaction produces a **smoky flame** due to the high carbon-content of benzene.

 $2\mathrm{C}_{6}\mathrm{H}_{6}^{}+15\mathrm{O}_{2}^{}\rightarrow12\mathrm{CO}_{2}^{}+6\mathrm{H}_{2}^{}\mathrm{O}$

▶ Image: Second Second

